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ABSTRACT

This paper uses a mixed-effects analysis of covari-
ance model (with both fixed and random effects) to
characterize mileage-dependent emissions profiles
for any given group of vehicles having a common
model design. Such profiles are useful for evaluat-
ing, for example, how emissions will change over
time within a new line of vehicles. The U.S. En-
vironmental Protection Agency uses these types of
evaluations to certify whether or not new models
conform to existing emissions standards. Given
such a group of vehicles, the statistical model intro-
duced in this paper describes both the average emis-
sions profile for that group while also accounting
for individual vehicle variability among vehicles
within the group. The model can be used to provide
realistic confidence bounds for the average emis-
sions deterioration profile within a given group,
therefore allowing accurate emissions comparisons
of multiple groups. The approach is illustrated with
a sample of emissions data from two types of vehi-
cles: natural gas Dodge Ram vans and gasoline
Dodge Ram vans (all from the 1992–94 model
years). The population profile for nonmethane
hydrocarbons is explored. The results indicate the
presence of vehicle-to-vehicle variation within each
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vehicle type. This variation leads to confidence
profiles that can be markedly different (but more
appropriate) than what would be obtained from a
simple fixed-effects regression model. The results
highlight the potential for incorrectly characterizing
emissions profiles whenever decisionmakers rely on
standard regression techniques.

INTRODUCTION

Policymakers who establish emissions standards
for new vehicles often focus on both the baseline
emissions when the automobile is new, as well as
on the rate at which those emissions deteriorate
with vehicle age and use. Unfortunately, the emis-
sions (as well as the emissions deterioration rate)
from any individual vehicle after a specified
amount of use can vary significantly from the aver-
age emissions of all similar vehicles under the same
conditions. Hence, when evaluating average emis-
sions across a population of vehicles that are nom-
inally identical (same make, model, design) but
utilize new technologies (such as alternative fuels),
it is necessary to characterize the emissions profiles
(average emissions as a function of mileage trav-
eled) for the population, while also accounting for
variation among vehicles within the population.

Over the past several years, many studies have
attempted to collect and analyze emissions from in-
use alternative fuel vehicles (AFVs) (i.e., AFVs oper-
ating in normal, daily driving conditions). Examples
of these studies for light-duty vehicles include the
work of Gabele (1990, 1995), Kelly et al. (1996a,
1996b, 1996c), Kirchstetter et al. (1996), Norbeck
et al. (1998), Durbin et al. (1999), and Whalen et al.
(1999). Examples from the heavy-duty literature
include Clark et al. (1998), Chandler et al. (1999),
and McCormick et al. (1999).

One significant data-collection effort has been
funded by the U.S. Department of Energy and
managed by the National Renewable Energy
Laboratory (NREL). This program has collected
emissions data from over 400 AFVs and gasoline
control vehicles operating in federal government
fleets. These vehicles operate on a variety of fuels,
including methanol blends, ethanol blends, com-
pressed natural gas, and propane. Vehicles are
operated in various federal agency fleets and repre-
sent a variety of driving conditions and operations.

The National Alternative Fuels Data Center
(AFDC), located in Golden, Colorado, collects and
publishes data from these emissions tests.

Policymakers are interested in the results of such
studies in order to evaluate the potential impact of
AFVs on air pollution. This necessarily requires
that researchers develop models for the emissions
generated by these vehicles over their useful life-
time. These emissions profiles may then be used to
characterize lifetime emissions for those vehicles
and to help establish standards for acceptable emis-
sions levels at various points in a vehicle’s lifetime.

The goal of this paper is to illustrate one
approach that evaluates an assumed functional
relationship between emissions and mileage, but
also attempts to properly incorporate and account
for variation in emissions from one vehicle to
another. In doing so, a more complete understand-
ing of the average deterioration in a group of vehi-
cles and of the variation among vehicles and
between fuel types is possible.

The statistical model described in this paper is a
generalization of the classic analysis of covariance
(ANCOVA) model. This approach is more precise
than conventional regression models because it
accounts for both engine age (as measured indirect-
ly by odometer readings) and variations between
vehicles of the same make and model.1 Furthermore,
the generalized ANCOVA allows more realistic esti-
mates of the variation inherent in comparisons
between vehicles operating on different fuels and
allows more realistic estimates of the size of
confidence bands for the average emissions across
all vehicles and also for individual vehicle emissions.

The second section illustrates the impact that vari-
ations among vehicles can have on estimated emis-
sions profiles and on the width of confidence bands
for the average emissions profile. We use a simple
example to illustrate the key concepts. We demon-
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1 The statistical model presented in this paper can be gen-
eralized to describe emissions profiles in populations con-
taining a variety of vehicle designs, model years, etc. This
more generalized model would be useful for characteriz-
ing the emissions of a highly diversified population (i.e., a
fleet owned by a large corporation or government agency).
However, this paper focuses on the more restrictive prob-
lem of characterizing the emissions profile in a group of
vehicles that are nominally identical with respect to model
design, engine type, etc.



strate that evaluations of emissions profiles that fail
to properly account for vehicle-to-vehicle variation
can lead to confidence bands that give overly opti-
mistic estimates of the precision with which the aver-
age emissions profile (averaged across all vehicles in
the group of interest) can be determined.

The third section describes a general mixed-
effects ANCOVA model that may be used to: 1)
estimate emissions profiles in one or more groups
of vehicles, and 2) compare emissions profiles
among those groups. This model accounts for ran-
dom variations between vehicles, thereby avoiding
the pitfalls illustrated in the second section.

The final section demonstrates the use of the gen-
eral ANCOVA model described earlier by analyzing
nonmethane hydrocarbon (NMHC) emissions
from 58 in-use vehicles selected from the AFDC
database. All 58 vehicles are Dodge Ram vans with
the same engine size, and all from model years
1992–94. Twenty-seven of these vehicles ran exclu-
sively on compressed natural gas, while the other
31 vehicles were dedicated to the exclusive use of
California Phase II reformulated gasoline (RFG).

THE IMPACT OF VEHICLE-TO-VEHICLE VARIA-

TION ON ESTIMATED EMISSIONS PROFILES

One seemingly common-sense approach to evalu-
ating emissions profiles over vehicle lifetimes is to
express emissions as a simple linear function of
mileage (thereby indirectly accounting for deterio-
ration effects). That is, one can fit the simple linear
regression model

Yij = � � �mij � �ij (1)

where Yij is the jth emissions reading on the ith car
taken at odometer reading mij. This model assumes
that emissions are a linear function of mileage.
This model is also based on the important assump-
tion that the only random variation in emissions
comes from the error term �ij.

Such an approach, however, does not adequate-
ly account for the inherent variation among indi-

vidual vehicles within a group.2 Hence, the result-
ing confidence bands for the average group-wide
average emissions profile, as well as the tolerance
bands giving estimates of the expected range of
emissions from individual vehicles, are often too
narrow. This failure to account for vehicle-to-vehi-
cle emissions variability may also lead to incorrect
statistical testing and estimation procedures, there-
by making it difficult to reliably detect differences
between groups of vehicles and fuel types.

In order to illustrate these concepts, imagine the
case in which one randomly selected new car is used
to evaluate the population-wide average emissions
profile for all similar vehicles.3 This vehicle is driven
for 100,000 miles on a test track and its NMHC
emissions are measured every 10,000 miles. This
imaginary study would provide 10 ordered pairs of
data (miles driven, NMHC emissions). The com-
mon-sense approach described above would use
these 10 observations to fit a simple model of the
form given in equation (1), where Yij is the measured
NMHC emissions of the ith car after mij miles of dri-
ving; mij is the miles driven by car i on the jth mea-
surement, and �ij is the random variation due to
unexplained factors.4 It is typically assumed that the
�ij’s are independently distributed from a normal
distribution with a mean of zero and a standard
deviation of ��. Under this traditional regression
model (which does not account for vehicle-to-vehi-
cle variation), the population-wide average emis-
sions E(Y) after m miles of driving is given by

E(Y) = � � �m. (2)

Conventional least-squares estimation of the
above model leads to estimates of � and �, which
are designated as �^ and �

^
. Using these well-known

results, along with the simplifying assumption that
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2 A group of vehicles is defined here as all vehicles that are
nominally identical with respect to make, model, engine
size, year, and fuel type. The analysis reported herein
assumes that a random sample of vehicles from this group
has been taken and the emissions monitored over an
extended mileage range.

3 It is clear that the use of one vehicle to characterize the
emissions profile for an entire group of similar vehicles is
not a very sound practice. However, this simple case will
be used here in order to simplify the mathematical pre-
sentation. Moreover, the Environmental Protection
Agency’s emissions certification program requires manu-
facturers to test only one vehicle in order to estimate emis-
sions profiles for an entire population of similar vehicles
(Hormes 2000).
4 Note that the subscript i is not necessary here, but is
included to emphasize the fact that the ith car in the pop-
ulation has been selected. The reasons for including this
notation will be evident later.



the error standard deviation �� is known, the con-
ventional regression approach will lead to the fol-
lowing quantities of interest (Graybill 1996).

1. The estimated emissions profile:

E
^
(Y) = �^ � �

^
m. (3)

2. A 95% confidence band for the average emis-
sions (averaged across all vehicles in the popula-
tion) at mileage m:

3. A 95% prediction band for the emissions of an
individual vehicle at mileage m:

Note that the quantity m– in equations (4) and
(5) stands for the average mileage odometer read-
ing in the data, and n is the total number of obser-
vations in the study (n = 10 in this example).

Now suppose that there is a sizeable difference
in emissions levels between vehicles in the popula-
tion. For simplicity, assume that all the vehicles in
the population exhibit the same deterioration rate
of NMHC emissions (i.e., the value of � is the
same for all vehicles in the population), but that
the baseline emissions value is different from one
vehicle to another (i.e., the intercept varies between
vehicles). In this case, we can generalize the model
in (1) to be

Yij = � � �i � �mij � �ij. (6)

Notice that the only difference between (6) and
the traditional model in (1) is that quantity �i has
been added to the intercept. With this model, � is
the average value of the intercept (averaged
across all vehicles in the population), and the
quantity �i is the amount that the intercept for
vehicle i deviates from the population-wide aver-
age (�). Here, all vehicles in the population
exhibit emissions profiles that follow the same
slope, but these profiles of are offset from one
vehicle to the next.

Assuming the vehicle in the study was randomly

selected, the value of �i is random. Moreover, if the
value of � is unknown, the value of � and �i can-
not be uniquely determined from the data. It is typ-
ically assumed that the values of the �i in the
population are independent and follow a normal
distribution with a mean of zero (i.e., the average
intercept across all vehicles in the population is �)
and a standard deviation of �v (i.e., the intercepts
vary randomly from vehicle-to-vehicle, and the stan-
dard deviation of intercepts from all vehicles is �v).

Now suppose that the researcher fails to recog-
nize the structure in (6), and fits the model in (1)
using standard least squares techniques; that is, he
fits a model that fails to account for the random
variation between vehicles.5 Given these assump-
tions, Appendix A shows that the following are true:

1. The estimated average profile given in (3) still
gives an unbiased estimate of the population-
wide average emissions; and

2. A 95% confidence band in (4) for the popula-
tion-wide average emissions and a 95% predic-
tion band in (5) for predicting the emissions of
an individual vehicle after m miles of use are too
narrow. The discussion below elaborates on this
point.

Statement 2 above is supported by figure 1,
which illustrates the width of a 95% confidence
band for population-wide average emissions at
55,000 miles in the hypothetical example. The the-
oretically correct 95% bandwidth is spanned by
the outside, solid-line curves. Confidence intervals
that have a 95% probability of including the actu-
al population-wide average emissions have an
expected bandwidth that corresponds to the solid-
line curves. The bandwidth of the traditional inter-
val, as determined from equation (4) above, is
spanned by the inside, dashed-line curves.
Confidence intervals based on this bandwidth will
have less than 95% probability of including the
true population-wide average emissions. The 
x-axis displays the ratio of the vehicle-to-vehicle
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E(Y) ± 1.96 . �� . 1
n �

n(m–m)2

n�mij
2 –(�mij)

2 (4)
^

E(Y) ± 1.96 . �� . 1
n ��

n(m–m)2
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2 –(�mij)

2
(5)1^

5 The study design in our example would be inadequate
for detecting vehicle-to-vehicle variation. If vehicle-to-
vehicle variation was believed to be present, care would be
taken to collect data from several randomly selected vehi-
cles from the fleet. Using the techniques described later in
this paper, the value of the vehicle-to-vehicle standard
deviation could then be estimated.



standard deviation (�v) to the error standard
deviation (�	). Hence, when this ratio is zero,
there is no vehicle-to-vehicle variation and the
traditional approach is appropriate. Notice that
when the ratio on the x-axis is zero, the “correct”
confidence band and the band from traditional
regression are identical.

On the other hand, when the ratio on the x-
axis is large, the vehicle-to-vehicle variation is
also large. In such a case, the traditional regres-
sion model fails to account for the additional
source of variation between vehicles. For exam-
ple, consider the case when the vehicle-to-vehi-
cle variation is the same size as the error
variation (i.e., the ratio on the x-axis is equal to
1). It is clear from figure 1 that the traditional
confidence band is too narrow by a factor of 3
or more. Hence, in this case, the traditional
approach leads to a grossly over-optimistic pic-
ture of how precisely the population-wide aver-
age emissions profile may be estimated. In fact,
even if the size of vehicle-to-vehicle variation is
small (as when the ratio on the x-axis is 0.4 to
0.6), the error in the confidence bandwidth can
be large. In such a case, the use of the conven-
tional simple linear regression model in (1) will
lead to confidence bands that are advertised to

have a 95% confidence level, but that have a
much lower confidence level in reality.6

Figure 1 illustrates the practical implications of
vehicle-to-vehicle variation. Figures 2, 3, and 4 illus-
trate this in a slightly different way. Figure 2 illus-
trates the case in which there is no vehicle-to-vehicle
variation. In this case, all the vehicles in the popula-
tion have an assumed common emissions profile,
indicated by the solid line. However, because of ran-
dom variations from one measurement of emissions
to the next (due to imprecision in laboratory meth-
ods, etc.), a given vehicle’s emissions measurement
at a particular mileage will vary randomly around
the population-wide profile. This variation is repre-
sented by the bell-shaped curves spaced along the
line. Each bell-shaped curve represents the distribu-
tion of emissions measurements that one could
expect to see at the specified mileage reading.

Figure 3 illustrates the case in which each vehi-
cle in the population has its own emissions profile.
More specifically, figure 3 represents the case in
which all of the profiles are parallel (i.e., the rate of
emissions deterioration is constant for all vehicles),
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6 The error in the confidence band will not be as great if
multiple cars are included in the sample. Nonetheless,
even if multiple cars are sampled, the error in the
confidence bandwidth can still be sizeable, provided that
the vehicle-to-vehicle variation is large.
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FIGURE 1   Comparison of Confidence Bands on Population-Wide Average Emissions When Vehicle-to-Vehicle
                   Variation is Present
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while the intercept of the emissions profile varies
from one vehicle to the next. This corresponds to
the model in (6). Notice that each individual line in
figure 3 also displays several bell-shaped curves
that represent the distribution of actual emissions
measurements from each individual car at a given
mileage. Figure 4 superimposes on figure 3 the

population-wide average emissions profile, along
with a corresponding set of bell-shaped curves
along that profile. Notice that the bell-shaped
curves in figure 4 are much wider than in figure 2
where no vehicle-to-vehicle variation is present.
This is because the collection of emissions readings
from a randomly selected car at a fixed mileage
will vary from the population-wide average due to
random error variation (�) and because of varia-
tions between vehicles (�v).

Hence, if vehicle-to-vehicle variation is present
in the form indicated in equation (6), then regres-
sion analysis that is based on the simple linear
model in (1) will lead to confidence bands and pre-
diction intervals that can be highly inefficient and
possibly even deceptive. Policymakers who rely on
such estimates to make comparisons between dif-
ferent groups of vehicles (e.g., vehicles operating
on different fuels) run a sizeable risk of making
decisions that do not realistically reflect the actual
capabilities of those populations.
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FIGURE 2   Illustration of the Case in Which All
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FIGURE 3   Illustration of the Case in Which Individual Vehicles’ Emissions Profiles Have Different
                    Intercepts from One Vehicle to the Next



Consider, for example, the case in which the
vehicle-to-vehicle standard deviation is the same
size as the error standard deviation. Hence, for this
case, the ratio on the horizontal axis of figure 1 is
1.0. In such a case, if model (1) is used to charac-
terize the population-wide emissions profile, then
the resulting 95% confidence bands for average
emissions at 55,000 miles will be too narrow by
approximately 70%, and the confidence level for
those bands will in fact be much lower than 95%.
Such an error can lead policymakers to have an
overly optimistic picture of how variable emissions
will be from vehicles in this population. This mis-
understanding can lead to emissions standards that
are unreasonably tight.

Figure 1 also suggests that the type I error rate
(i.e., the � level) associated with traditional hypoth-
esis testing procedures can be much greater than the
advertised level whenever vehicle-to-vehicle vari-
ability is present and is not properly accounted for

in the analysis. This means that chances of spurious
statistically significant results can be much greater
than the advertised �-level when vehicle-to-vehicle
variability is ignored. For example, suppose that the
vehicle-to-vehicle standard deviation is the same
size as the error standard deviation and a two-sam-
ple t-test with an �-level of 0.05 is used to compare
a group of alternative fuel vehicles to a correspond-
ing group of conventional fuel vehicles. Further
suppose that the analysis did not properly account
for the vehicle-to-vehicle variation. Based on the
earlier argument, the resulting hypothesis test may
in fact have an �-level that is much greater than the
advertised �-level of 5%. This means that the
researcher has much more than a 5% risk of incor-
rectly finding a difference between the two groups
of vehicles when no such difference really exists.

Model (6) is more realistic than model (1)
because it allows for potential variations between
vehicles in a population. However, (6) can be fur-
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FIGURE 4   Average Emissions Profile in the Presence of Vehicle-to-Vehicle Variation



ther improved by allowing for different deteriora-
tion rates as well as different baseline emissions
from one vehicle to another. In such a case, one
would expect that the problems with the
confidence bands and prediction bands from a tra-
ditional regression model would be even more
acute than illustrated here. The next section intro-
duces this more general model and also incorpo-
rates terms that allow for statistical comparison of
different populations or fuel types.

DESCRIPTION OF A GENERAL MODEL

The statistical model used in this study relies on the
general methodology of analysis of covariance
(ANCOVA) discussed in Searle (1971). This model
can be used to compare two or more “treatments”
that have been applied to a group of individuals. In
the present study, the “group” consists of individ-
ual vehicles assumed to be nominally “identical”
with respect to make, model, engine size, fuel type,
etc. The treatments are the different fuels under
which these vehicles are operated. The response of
interest is the emissions of a given pollutant. The
simplest ANCOVA model accounts for the fact that
the response (i.e., emissions) depends on a “covari-
ate” (i.e., mileage driven), which can change from
one observation to the next. In this sense, the
ANCOVA model is a general application of the
standard analysis of variance (ANOVA) in which
one or more treatments are compared, but in
which there is no covariate.

The model illustrated here generalizes the sim-
plest ANCOVA model to also account for the ran-
dom variation between vehicles within the
population. By doing so, the analyst is afforded
accurate tests for comparing emissions profiles
among fuel types and for comparing emissions at
any specified mileage. The approach is well estab-
lished in the statistical literature (see, e.g., Searle
1971 and Federer and Meredith 1992), but it has
received little attention in the field of emissions
modeling (one exception is a study conducted by
Battelle Memorial Institute (1995)).

Let Yijk represent a specific emissions con-
stituent as observed on the kth test on the j th vehi-
cle that is operating on fuel type i. Let mk(i,j) stand
for the kth mileage reading on car j operating on
fuel type i. It is assumed that only one emissions

result is obtained at each mileage reading on each
vehicle (but the model can be generalized to handle
multiple measurements). The model has the form:

Yijk = [���•mk(i,j)]�[
i��i • mk(i,j)]�[�j(i) �

�–j(i) • m
(i,j)]��ijk (7)

The first two terms [��� • (mk(i,j))] represent
the average dependence of the emissions on vehicle
mileage, regardless of which fuel type is used or the
variation that is inherent among individual vehi-
cles. The next two terms [
i��i(mk(i,j))] represent
how this average dependence is affected by fuel
type i. The next two terms [�j(i) � �–j(i)(m
(i,j))] rep-
resent how the average dependence is affected by
the unique characteristics of vehicle j that operates
on fuel type i.

This model allows for the realistic situation in
which there is an overall population-wide deterio-
ration curve that describes the average emissions
for all vehicles in the group of interest that are
using fuel type i. The group-wide emissions curve
when operating on fuel type i is defined by the
expression ���•(mk(i,j))�
i��i(mk(i,j)) . However,
the model also accounts for the fact that each vehi-
cle in the group may have an emissions curve that
differs slightly from the average curve for all similar
vehicles. This variation from the average curve can
occur in either the intercept (through �j(i)), the slope
(through �–j(i)), or through both the intercept and
slope. The final term (�ijk) represents the random
variation in emissions that are not accounted for in
the model. This variation may be attributed to such
things as variation from the test method used, dif-
ferences between laboratories (if each car is tested
at multiple labs), or any number of other factors.

The assumptions behind this model are stated as
follows:

� Assumption 1: At a fixed mileage, emissions fol-
low a normal distribution.

� Assumption 2: The quantities �, �, 
i, and �i

in the model in equation (7) are fixed, but
unknown parameters. Moreover, since the 
i

and �i represent deviations from the mean inter-
cept and slope, respectively, it assumed that 
�
i = ��i = 0. If the study is aimed at charac-
terizing the emissions profile of a fixed or
specified group of vehicles and for a fixed set of
fuel types, then this fixed-effects assumption is
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reasonable. However, if the study’s goals are to
characterize emissions across a wide variety of
vehicles and fuel types, but data have been col-
lected on only a random sample of vehicles and
a random sample of fuel types, this assumption
must be relaxed. The present study (and many
other studies of practical interest) are consistent
with this fixed effect’s assumption.

� Assumption 3: �j(i), �–j(i), and �ijk are all random
quantities. Each of these terms is assumed to fol-
low a normal distribution having a mean of
zero. The standard deviations of these distribu-
tions are �� , ��–, and ��, respectively. The stan-
dard deviations �� and ��– measure how much
individual vehicle emissions profiles will vary
around the population average emissions
profile; that is, the larger �� and ��– are, the
more individual vehicle emissions profiles may
vary from the population average profile. It is
also assumed that �j(i),  �–j(i), and �ijk are mutu-
ally independent.

The reader should note that this model does not
explicitly account for variation between the labo-
ratories conducting the tests. The AFDC data ana-
lyzed in this paper were collected across three
different laboratories, one of which was located at
a high altitude. Lab-to-lab variation can be a dom-
inant source of variation in these types of measure-
ments. However, the model will provide a reliable
test for comparing emissions from the two fuel
types provided that (i) each car was tested at only
one lab, and (ii) within each lab, vehicles from both
fuel types were tested. Both requirements were
satisfied by the data analyzed in this paper.
Furthermore, under these assumptions, the lab-to-
lab variation will be accounted for in the model,
but will be indistinguishable from vehicle-to-vehi-
cle variability. Hence, if the analysis suggests a
large variation between vehicles within each group
of interest, we cannot conclude that this source of
variation is found only in differences between vehi-
cles. It may partly be caused by variations between
testing labs.

EXAMPLE APPLICATION: 58 DODGE RAM

VANS FROM THE AFDC DATABASE

The ANCOVA model presented here was applied to
emissions values from the AFDC database for 27
compressed natural gas (CNG) Dodge Ram vans
and 31 gasoline counterparts (henceforth referred to
as “RFG” for “reformulated gasoline”). Data was
extracted on August 11, 1998. Several pollutants
were measured on each car. Results for nonmethane
hydrocarbons are analyzed and reported here.

Emissions tests on these vehicles were conduct-
ed at three commercial laboratories in various
locations in the United States. A competitive bid-
ding process was used to select the labs. A panel of
experts (including U.S. Environmental Protection
Agency—EPA—personnel) conducted site visits to
ensure that standardized testing methods were used
across all three labs and that appropriate quality
assurance procedures were in place. Each vehicle
was tested using the EPA’s Federal Test Procedure
(FTP) protocol at accumulated mileage readings of
approximately 4,000 miles, 10,000 miles, and every
10,000 miles thereafter. Because of obvious logisti-
cal reasons, it is not the case that all the vehicles
were tested at these exact mileage specifications.
The general test procedures, emissions test driving
profiles, and hydrocarbon specification procedures,
along with other facts about the AFDC testing pro-
gram and vehicles are reported elsewhere (Kelly et
al. 1996a, 1996b, and 1996c).

Table 1 provides information about the vehicles,
their fuels, and the number of vehicles per fuel
(sample sizes). Note that all the CNG vehicles were
original-equipment-manufactured Dodge Ram
vans (i.e., none of the vehicles was an aftermarket
conversion). Although no data are available on
exactly how each vehicle was used, it is assumed
that all the vehicles experienced similar driving
conditions. This assumption may not be valid, and
thus should be considered when interpreting the
results of this analysis.

As shown in table 1, the alternative fuel vehicles
come mostly from model year (MY) 1992, with
fewer coming from MY 1994. The reverse is true
for the RFG vehicles in the study. This discrepancy
could jeopardize the ability to make comparisons
of the CNG and RFG emissions if different emis-
sions control systems had been installed on the
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1992 vehicles as compared with the 1994 vehicles.
This, however, is not the case: emissions control
systems in MY 1992 and MY 1994 vehicles are
identical for the Dodge Ram vans in this study.7

It is also important to recognize that these vehicles
are now 6 to 8 years old and that they represent
emissions control technologies that may have been
modified or even replaced. The reader is encour-
aged to keep in mind the fast pace at which emis-
sions control technologies may change (especially
for new AFVs), and to take the potential for new
technological advancement into account when
interpreting the results reported here. Beyond this
issue, MY is given no further consideration in the
modeling and analysis.

These NREL-tracked vehicles were FTP tested
several times at each of several different mileages.
The AFDC database contains weighted FTP (WT)
test results for each vehicle at each mileage, which
were used in the present study. The original AFDC
database included data on over 450 vehicles and
13 different models. In order to provide a sample
of vehicles that represented a uniform population
with respect to model (body design and engine)
and model year, only the data for Dodge Ram vans
was used. This original sample included 108 such

vehicles. Vehicles were eliminated that were tested
at only one mileage reading or if the difference in
mileage between the first test and last test was less
than 4,000 miles. In addition, emissions tests at
mileages less than 3,000 miles were eliminated due
to the possibility of a “green catalyst” effect. These
selection criteria left the final sample of 58 vehicles
(27 CNG and 31 RFG vehicles).

A comparative frequency distribution of the col-
lective mileages with all tests on all 58 vehicles is
shown in figure 5. The average mileage for all tests
on all CNG vehicles is 14,159 miles, with a medi-
an of 11,397 and a maximum of 45,159. The aver-
age mileage for all tests on all RFG vehicles is
20,217 miles, with a median of 17,206 and a max-
imum of 57,099. It is impossible to determine from
the available data whether these differences are due
to variations in trip duration, trip frequency, or
both. It should be noted that the original experi-
mental design specified that all vehicles be tested at
the same mileage readings through the course of
the study. This allows emissions profiles to be equi-
tably monitored across all vehicles, thereby simpli-
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FIGURE 5   Mileage Frequency Distribution for
Natural Gas (CNG) and Reformulated Gasoline
(RFG) Vehicles

TABLE 1  Information on Vehicle Types and Fuels

Vehicle type N (by model year)

Dedicated original equipment 
manufactured CNG Dodge Ram 22 (1992)
B250 Van (CNG/Ram) 5 (1994)

� 5.2 liter V-8 engine configuration
� Multi-point fuel injection
� 4-speed automatic
� 11.1–15.7 equivalent gallon fuel capacity
� 6,400 lbs gross vehicle weight
� LEV-certified

RFG Dodge Ram B250 Van 11 (1992)
(RFG/Ram) 20 (1994)

� 5.2 liter V-8 engine configuration
� Multi-point fuel injection
� 4-speed automatic
� 35 gallon fuel capacity
� 6,400 lbs gross vehicle weight

7 Note, however, that the emissions control equipment for
the CNG vehicles is designed for operation on CNG and
is different from the equipment used in RFG vehicles.



fying the interpretation of the analysis. Un-
fortunately, due to the logistical limitations and the
large scope of the study, this ideal was not strictly
achieved (as illustrated by the non-uniform distrib-
ution of mileages in figure 5). While this departure
from the intended design complicates the analysis
somewhat, it does not invalidate the approach
described here. Furthermore, the statistical model
discussed above characterizes emissions deteriora-
tion only for the specific range of mileages covered
in the data. At the outer limits of this range, the
precision of the estimated profile is less than at the
center of the range where more data are available.
This is reflected in wider confidence bands around
predicted emissions at high mileages.

Figure 6 visually displays the raw data for all 58
vehicles. A difference in NMHC emissions between
the fuel types is suggested in this plot. In addition,
the rate of increase in NMHC emissions does not
exhibit any sizeable difference between the two
fuel types. Both of these features are formally
addressed and tested in the analysis.

Figure 6 also exhibits two outliers. These both
came from one CNG vehicle that yielded much
higher NMHC emissions in its first readings than
in subsequent readings. That vehicle’s data were
omitted from the analysis.

RESULTS

As previously noted, the ANCOVA model present-
ed in equation (7) is used to determine whether sta-
tistically significant differences exist in the average
emissions profile between vehicles operating on
different fuels (CNG and RFG), while also
accounting for the variations that are inherent
from one vehicle to another. The emissions profiles
generated by this model estimate the average emis-
sions values that can be expected for a group of
vehicles operating on each particular fuel type at
any given mileage.

Average emissions values for each fuel type were
determined by fitting the complete model in equa-
tion (7) using the PROC MIXED procedure in SAS,
version 6.12. A listing of the appropriate SAS code
is provided in Appendix B. Parameter estimates and
their variances were found, allowing the generation
of predicted values and confidence bands for the
average population-wide emissions component of
the model when operating on a particular fuel type.
In other words, values and confidence bands were
determined for Ei, where Ei is the average emissions
from vehicles when operating on fuel type i at a
specific mileage m, as follows

Ei = � � � • m � 
i � �i • m (8)

The NMHC emissions profiles in equation (8),
along with their 95% confidence intervals, are
plotted in figure 7.

The analysis also provides estimates of the error
variance (�2

�) and the two variances associated
with vehicle-to-vehicle variation (�2

� and �2
�).

Table 2 displays these estimates for NMHC. Recall
that figure 1 demonstrates that when the vehicle-
to-vehicle variation is large relative to the error
variation, a model that fails to account for such
variation will lead to confidence intervals that are
too narrow for the stated level of confidence.
Figure 1 shows that the larger the ratio of vehicle-
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FIGURE 6   Plot of NMHC Emissions vs Odometer
Reading for 58 Dodge Ram Vans

TABLE 2  Estimated Vehicle-to-Vehicle Variation
and Error Variation for NMHC Among 58 Dodge
Ram Vans

Variance component estimate

�2
� �2

� �2
�

0.0033 0.0000 0.0012



to-vehicle standard deviation to error standard
deviation, the more misleading are the confidence
intervals (or hypothesis tests) derived from using
an incorrect model. From table 2, the ratio in
figure 1 is calculated by

Using this value on the x-axis in figure 1 suggests
that a traditional analysis that fails to account for
this large variation between vehicles can lead to
confidence bands that are too narrow by a factor
of approximately 50%. If emissions standards for
in-use vehicles are based on such analyses, those
standards may in fact provide an unrealistic picture
of the range of emissions to be expected over the
lifetime of any group of vehicles.

Table 3 summarizes the results of standard
ANCOVA F-tests used to compare the average
emissions profiles between the two fuel types. The
F-test for different slopes in table 3 indicates
whether the rates of emissions deterioration are the
same for both fuel types. If this test is significant,
there is strong evidence that the slopes of the
NMHC emissions profiles differ between the two
fuel types. If the first F-test is not significant, the
second F-test (F-test for a common nonzero slope)
and third F-test (F-test for a common intercept)
should be examined. If the second test is significant
(and the first F-test is not significant), it is safe to

conclude that NMHC emissions do change with
mileage and that the two groups of vehicles exhib-
it parallel (and possibly identical) profiles. If the
third F-test is significant (and the first F-test is not
significant), it is safe to conclude that the two
groups of vehicles exhibit parallel, but distinct
emissions profiles. Those profiles may be “flat”
(unchanging with mileage) or they may exhibit a
common nonzero trend, depending on whether or
not the second F-test is significant.

Figure 7 displays the estimated emissions
profiles for NMHC in both types of vehicles. With
respect to NMHC, the CNG vehicles in the study
appear to be cleaner than their RFG counterparts
across all mileages. This is supported by the F-tests
in table 3. The F-test for slope and the F-test for a
common nonzero slope jointly indicate that there is
a common nonzero slope in the NMHC emissions
profiles for both groups of vehicles. The F-test for
a common intercept in table 3 indicates that, while
the two profiles appear to have a common slope,
they are distinct. Combining these results with
figure 7, it can be seen that the CNG Rams repre-
sented in this study indeed have lower average
NMHC emissions than the RFG Rams throughout
the mileage range covered and that this difference
is statistically significant.

CONCLUSIONS

This paper motivates and describes a generalized
analysis of covariance (ANCOVA) model for char-
acterizing emissions profiles among populations of
vehicles operating on different fuel types. The
approach is illustrated on a data set comprised of
27 CNG and 31 RFG Dodge Ram vans operating
in the U.S. federal fleet. The analysis and discussion
emphasizes that a proper analysis of emissions must
consider: 1) the emissions deterioration that occurs
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TABLE 3  ANCOVA F-Test Results for Comparing
NMHC Emissions Profiles Between CNG and RFG
Vehicles

F-test for F-test for a common F-test for a
different slopes nonzero slope common intercept

(p-value) (p-value) (p-value)

Not significant Significant Significant

(0.1394) (0.0001) (0.0001)

vehicle-to-vehicle variance
error variance

= = 0.61
�2

� � �2
�

�2
� 



over the lifetime of a vehicle; 2) the emissions vari-
ability that is prevalent for individual vehicles; and
3) the emissions variability from one vehicle to
another. Conventional regression analyses fail to
properly account for 2 and 3. The ANCOVA model
used in this study explicitly accounts for all of these
factors and can be readily applied to more precise-
ly characterize the emissions of any alternative or
conventional fuel vehicles.

Moreover, by properly accounting for variation
between vehicles, one can develop a more realistic
understanding of the range of emissions values that
are possible from any randomly chosen vehicle in
the population. This range may, in fact, be consid-
erably different from what would be obtained
from more classical regression models that fail to
account for variations between individual vehicles.
This type of understanding can be critical to poli-
cymakers and researchers.

The confidence bands displayed in figure 7 are
based on the model in equation (7) that accounts for
variation among vehicles in the same population.
While common sense suggests that such variation
does exist, its impact on analyses aimed at charac-
terizing emissions profiles has not generally been
appreciated. Whenever the vehicle-to-vehicle varia-
tion is large (compared with the error variation),
then any analysis that fails to account for variation
between vehicles can lead to confidence bands
around the emissions profile that are misleading
(and may even be seriously misleading). In such a
case, comparisons of emissions profiles from differ-
ent populations or different fuel types are suspect.

APPENDIX A: FORMULAS USED 

FOR GENERATING FIGURE 1

This section outlines the statistical theory behind
the confidence bandwidths displayed in figure 1. It
is assumed that the reader is familiar with proba-
bility theory and the theory of general linear statis-
tical models as described in Graybill (1976).

Recall that the context for interpreting figure 1
is as follows. Data is collected on some emissions
constituent (e.g., NMHC) from a single vehicle
after 10,000, 20,000,….,100,000 miles of use.
Least squares analysis is then used to fit the model
given in equation (1) and to calculate traditional
confidence bands for the average emissions after

50,000 miles (using equation (4)). Now suppose
that there is some unknown vehicle-to-vehicle vari-
ation among the cars in the population of interest.
In particular, the intercept of equation (1) varies
randomly from one vehicle to the next, so that the
correct model for these data is actually equation
(6). The question to be answered is this: how mis-
leading is the confidence interval calculated from
equation (4)? Figure 1 attempts to provide one way
of answering that question.

Note that figure 1 displays the 95% confidence
bandwidth for the traditional confidence interval
(from equation (4)), along with the corresponding
bandwidth that would be necessary to achieve
95% confidence (assuming that the model in equa-
tion (1) is correct). Given the relative size of the
vehicle-to-vehicle variation (��) with respect to the
error variation (�), the expected width of the tra-
ditional confidence interval can be compared with
the width that would be necessary to achieve true
95% confidence (i.e., in order that the probability
that the interval covers the true average emissions
is truly equal to 95%). The x-axis specifies the
ratio �� � � and the y-axis displays the expected
size of the � bounds of the traditional interval and
the theoretically correct interval. Figure 1 clearly
illustrates that as �� � � increases, the disparity
between the confidence intervals increases.

In order to demonstrate how the bandwidths
in figure 1 are calculated, a matrix representation
of the general regression model will be used
(Graybill 1976). Suppose one new vehicle is ran-
domly selected from the population of interest.
This vehicle will be operated for a fixed number
of miles (e.g., 100,000 miles), and one or more
emissions constituents (e.g., NMHC) will be mea-
sured at fixed mileages along the way. Suppose n
emissions values are obtained from the vehicle
during the life of the study. Further suppose that
the relationship between emissions and mileage
for each car is correctly represented by equation
(6); that is,

Yij = � � �i � �mij � �ij, (9)

where i = 1, and j = 1,…, n. Assume that the error
terms (�ij) are independent and identically distrib-
uted according to a N(0,�2) distribution, and that
the �i terms are independent and identically distrib-
uted according to a N(0,��

2) distribution.
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Now suppose that vehicle-to-vehicle variation
(as represented by �i in (9)) is mistakenly assumed
to be absent, and traditional regression methods
are used to fit the model in (1), i.e.,

Yij = � � �mij � �ij, (10)

Using the traditional ordinary least squares esti-
mate of the model in (10), the goal is to calculate
the average bandwidth of the 95% confidence
interval for the model in (10) (which is based on
the assumption of no vehicle-to-vehicle variation)
and compare its bandwidth with the correct band-
width that would be required in order to assure
95% confidence (when vehicle-to-vehicle variation
is correctly incorporated).

Following Graybill (1976), matrix notation can
be used to represent the model in (10). Define the
following matrices.

The model in (10) can then be written in matrix
notation as follows:

= XB � E.

Using ordinary least squares, the estimate of the
regression coefficients, B

^
, is given by

B
^

= (X�X)–1 X�Y,

and the estimated population-wide average emis-
sions at mileage m is given by

M�B
^

= M�(X�X)–1 X�Y,

where M� = (1, m). It is easily shown (Graybill
1976) that this estimate is normally distributed
with a mean of M�B (i.e., the estimate is unbiased)
and a standard deviation equal to

Hence, assuming that the covariance matrix � is
known, the theoretically correct 95% confidence
interval for the estimated emissions at mileage m is
given by

Whenever there is no vehicle-to-vehicle varia-
tion, then � = �2I, where I is the identity matrix,
and expression (11) simplifies to

This last expression is the matrix representation of
the confidence band in equation (4).

On the other hand, if vehicle-to-vehicle varia-
tion is present, then � = �2I � �2

v J where J is a
matrix of all 1s. Under these conditions, expression
(11) does not simplify to the form in (12). Hence,
if it is mistakenly assumed that there is no vehicle-
to-vehicle variation and expression (12) (or, equiv-
alently, expression (4)) is used to calculate
confidence intervals, the resulting confidence bands
will be based on incorrect error terms, and the
confidence interval will be less than 95%. The cor-
rect 95% bounds are instead given by (11).

The error term in expression (12) (applied to the
hypothetical example discussed in section 2) corre-
sponds to the traditional confidence bandwidth
displayed in figure 1. The error term in expression
(11) corresponds to the correct 95% bandwidth
displayed in figure 1.

APPENDIX B: 

SAS CODE FOR FITTING THE ANCOVA

MODEL AND OBTAINING 95% CONFIDENCE

BANDS FOR THE POPULATION AVERAGE

EMISSIONS DISPLAYED IN FIGURE 6

/*
SAS code to get “best” variance component esti-
mates and predicted emissions separately within
each fuel type. These predictions and standard
errors correctly account for the covariance struc-
ture imposed by the random effects.

A separate call to PROC MIXED is required for
each response.

Variables are:
VID = vehicle ID code (unique for each

vehicle)
FUEL = type of fuel used by the vehicle
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Xn�2= En�1=B2�1 =

1  m1,11  m1,2...  ...
1  m1,n

�1,1
�1,2      ...
�1,n

n�1=

Y1,1Y1,2  ...
Y1,n

�n�n = var (Yn�1|X).

� M�(X�X)–1 X�   X(X�X)–1 M.�

� M�(X�X)–1 X�   X(X�X)–1 M� (11)M�B �1.96•
^

� M�(X�X)–1 X�IX(X�X)–1 M  =

(12)

M�B �1.96    •
^

� M�(X�X)–1 M.M�B �1.96•
^



(model assumes only one fuel type
is used on each vehicle)

ODOM = odometer reading
NMHC = nonmethane hydrocarbon reading

on the vehicle at the specified
mileage

*/
PROC MIXED DATA = SASUSER.FINALRAM
METHOD=ML;
CLASSES VID FUEL_TYP;
/*
The MODEL statement specifies only the “fixed
terms” in the model (i.e., the fuel type and odome-
ter reading). The FUEL*ODOM crossproduct
term instructs SAS to fit a separate slope for each
FUEL type.
*/
MODEL NMHC = FUEL ODOM ODOM*FUEL
/ SOLUTION DDFM=SATTERTH;
/*
The RANDOM statement identifies those terms in
the model that are random. Any terms identified in
the RANDOM statement are automatically includ-
ed in the model and are therefore not explicitly
named in the MODEL statement.
*/
RANDOM VID(FUEL) ODOM*VID(FUEL);
/*
The LSMEANS statements instruct SAS to calcu-
late the predicted mean emissions for each fuel type
at the specified mileage reading. This corresponds
to the quantity given in equation (8) of the paper.
The LSMEANS statement also provides the stan-
dard error that can be used to calculate the 95%
confidence interval for the mean emissions at the
specified odometer reading.
*/
LSMEANS FUEL/AT ODOM = 5000 PDIFF;
LSMEANS FUEL/AT ODOM = 10000 PDIFF;
LSMEANS FUEL/AT ODOM = 15000 PDIFF;
LSMEANS FUEL/AT ODOM = 20000 PDIFF;
LSMEANS FUEL/AT ODOM = 25000 PDIFF;
LSMEANS FUEL/AT ODOM = 30000 PDIFF;
LSMEANS FUEL/AT ODOM = 35000 PDIFF;
LSMEANS FUEL/AT ODOM = 40000 PDIFF;
LSMEANS FUEL/AT ODOM = 45000 PDIFF;
LSMEANS FUEL/AT ODOM = 50000 PDIFF;
LSMEANS FUEL/AT ODOM = 55000 PDIFF;

LSMEANS FUEL/AT ODOM = 60000 PDIFF;
RUN;
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